Arylation of Hydrocarbons Enabled by Organosilicon Reagents and Weakly Coordinating Anions

B. Shoa, A.L. Bagdasarian, S. Popov, H.M. Nelson *Science.* **2017**, *355*,1403-1407. 04/15/17 Mike Frasso

- X^- : Halocarbaboranes, $(F_5C_6)_4B^-$
 - Chlorocarbaboranes least coordinating

J. Am. Chem. Soc. **1996**, *118*, 2922-2298 Chem. Com. **2005**, 1669-1677

J. Am. Chem. Soc. **1996**, *118*, 2922-2298 Chem. Com. **2005**, 1669-1677

Lewis Acidity of R₃Si⁺

- Determined using Gutmann-Beckett method
- Complex Lewis acid with $OPEt_3$, measure $\Delta\delta^{31}P$
- As π conjugation increases, Lewis acidity decreases
 - $\Delta \delta^{31} P = 41.2, 44.9$ in (Mes)₃Si⁺ vs (Tipp)₃Si⁺
 - C-Si bond ~25% longer than C-C bond

- Duryl = 2,3,5,6-tetramethylphenyl
- Xylyl = 2,6-dimethylphenyl

Organometallics 2015, 34, 4952-4958

Previous Use of Silylium Ions

Organometallics **2013**, *32*, 3575-3582 J. Am. Chem. Soc. **2012**, *134*, 4421-4428 Organometallics **2013**, *32*, 6643-6646 Angew. Chem. Int. Ed. **2017**, *56*, 3389-3391

Inspiration for Current Work

- Si-F bond is favored by 190 and 120 kJ/mol respectively
- Conditions on left later adapted for other halocarbon reductions

Science 2008, 321, 1188-1190 Science 2011, 332, 574-577

Proposed Mechanism

C-F Arylation: Screen of Conditions

	[Ph ₃ C]+[H	[Ph ₃ C]+[HCB ₁₁ Cl ₁₁] ⁻ (2 mol%) Et ₃ SiH (4 mol%)		Ph	
l R	TMS	Benzene	→ [] R		
Anion	% Cat. Loading	Conc. (M)	<u>Temp (ºC)</u>	<u> Yield (%)</u>	
$[HCB_{11}H_5Cl_6]$	5	0.1	70	41	
[HCB ₁₁ H ₅ Br ₆]	5	0.1	70	0	
[HCB ₁₁ Me ₅ Cl ₆]	5	0.1	70	0	
[HCB ₁₁ Cl ₁₁]	1	0.02	30	55	
[HCB ₁₁ Cl ₁₁]	2	0.1	30	49	
[HCB ₁₁ Br ₁₁]	5	0.1	30	39	
[(C ₆ F ₅) ₄ B]	5	0.1	30	27	

C-F Arylation: β -Si Required?

- Si required ortho to F
- Byproducts are mostly aryl fluorides from protodesilation
 - Difficulty with byproduct characterization mentioned explicitly

Separation of Fluorophilicity & β -Si Effect

 If β-Si effect more important, a mixture of products should be observed with A

C-F Arylation: Substrate Scope

Arylation of Alkyl C-H Bonds

Science 2017, 355, 1403-1407.

Aryne Mechanism Operative?

- If aryne formed, both **A** and **B** should
- None of **B** found in first line's reaction mixture

Deuteration Studies

- Suggested that hydride shifts in arenium intermediate account for D/H distribution
- KIE: insertion into C-H is not rate determining step

Proposed Mechanism

Conclusion

- First non-transition metal aryl C-F bond activation, subsequent intermolecular functionalization developed
 - Can even functionalize methane
- Criticisms:
 - Method of arriving at reaction conditions somewhat vague
 - Unstabilized silvlium ion currently greatly limits functional group compatibility